

Dubai Metro Experience

Design and construction of the Dubai Metro, the longest fully automated driverless metro network in the world

Wednesday, April 5, 2017 AQTr (Association Québécoise des transport): 52e Congrès

delivering a better world

Steven LaRocco, Parsons Norman Chong, Thales

Dubai Metro – Context and Objectives

- Objective to become the region's prime business and leisure destination
 - Manage mobility of a growing population
 - Reduce use of automobiles

Decision made to build an efficient urban rail system using world-leading, proven, advanced technology

- · Largest fully automatic driverless metro system in the world
- Public transport backbone of Dubai
- Integration with developments
- Bus feeder routes
- Rail Designed for people with Special Needs
- Real time passenger information system
- Smart card ticketing system,
- Mobile phone coverage underground
- State of the art advertising

Dubai Metro – Network Summary

• 75km total length

- 2 lines (Red & Green)
- 47 stations + 3 depots

• 52km Red Line (opened 09/09/09)

- 5.7km underground tunnels
- 42.8km elevated viaduct
- 3.5km at grade
- 27 stations + 2 shared interchanges
- 2 depots

• 23km Green Line (opened 09/09/11)

- 8.3km underground tunnels
- 14.7km elevated viaduct
- 18 stations + 2 shared interchanges
- 1 depot

Dubai Metro – Network Summary

Design & Build contract awarded in July 2005

Client

Roads and Transport Authority (then Dubai Municipality)

Consultant

The Engineer (Parsons Systra Joint Venture)

Contractor

Dubai Rapid Link Consortium (DURL) Joint Venture of:

- Mitsubishi Heavy Industries, Tokyo, Japan
- Mitsubishi Corporation, Tokyo, Japan
- Obayashi Corporation, Tokyo, Japan
- Kajima Corporation, Tokyo, Japan
- Yapi Merkezi Insaat Ve Sanayi, Istanbul, Turkey

Designer

Atkins (Architectural Design – Aedas; Interior Design – KCA International)

Organization Chart

Program Management

Developed and monitored the project's budget, analyzed the project schedule, claims management and contract modifications, as well as leading all quality initiatives.

Construction Management

Monitored the Contractor's day-to-day activities to ensure that the execution of all site works (civil and systems) were completed in accordance with the approved designs, technical specifications, applicable standards and regulations, and all health & safety, quality assurance and environmental rules.

Design Reviews

Technical and functional assessments of the contractor's design and drawings to independently verify that contract requirements and RTA's expectations were met.

At peak Parsons had more than 250 management, technical, and supervision staff overseeing the works of the project's design-build Contractor, verifying integration & contract compliance to ensure timely project delivery in a safe environment

Dubai Metro – Architectural Context

World class architecture a key objective

Four main themes with distinctive colors

- Fire red themes
- Water blue themes
- Earth brown themes
- Air green themes

Other key influences were the historic and physical context to ensure stations sit well in their respective environment;

- Ultra modern 'clam shell' designs in new Dubai
- Heritage themes in old town

Station Interior Design Themes by KCA

FIRE

AIR

WATER

EARTH

Fire Theme Design

Air Theme Design

Water Theme Design

Earth Theme Design

Change the Fabric of Dubai

95 Entrance Pods

Integrated Bus Waiting Facility

58 Footbridges Connecting to Metro and other side of major road

10 Type-1 Extensions

With integrated Bus waiting facilities

3 Car Parks

Integrated Bus Station and/or bus waiting facilities

Road & Highways Improvements

Encourage safe, easy and comfortable pedestrian movements between modes of transportation

Dubai Metro – Massive Civil Engineering Works

Extensive civil engineering works including:

- **Tunneling:** TBM and cut and cover construction methods utilized
- **Station structures:** including underground diaphragm wall construction, overground extensive complex structural steelwork
- Viaduct and pier construction: over 50km of viaduct with more than 4000 piers

47 stations

- 37 overground
- 10 underground

Overground Stations – 3 Types

- **Type 1**: concourse at ground level, raised platform
- **Type 2**: concourse & platform raised 5m, access by entrance pods and footbridges
- **Type 3**: as type 1 but inclusion of 'pocket track' for expanded operations

Underground Stations

- four on the Red Line
- eight on the Green Line
- two shared interchange stations

Typical Type-2 Station

Type-3 Station

Typical UG Station

Station Context Planning Components

Interconnectivity of Road, Rail and Water Transport

- The area of 500m radius surrounding Metro Station is improved.
- Work includes constructing new roads, Footpath, Cycle track, Bus Stop / Bus Stand, Taxi Bays, Parking area etc.

Abu Hail Station in Green Line Lay out showing Bus station, Taxi Bays, Parking areas etc.

Dedicated power distribution system

- Three main power stations
- 132kV system with 33kV ring main

Massive HVAC systems provided

 extensive system design and installation to meet temperature control requirements

Passenger mobility systems

 extensive escalators, elevators & travelators through stations, footbridges and entrance pods

Environmental Control System (ECS)

- critical to provide integration to the rail systems (via the Operational Control System)
- all MEP systems monitored and/or controlled using the ECS and OCS interface

Operating Control System (OCS)

Interface to the MEP systems via the ECS All rail systems monitored and/or controlled using OCS with main control at the designated Operational Control Centre

Operational Control Centre (OCC)

Network centre for management of all integrated communication and control systems to maximize network efficiency

Driverless Train Systems

Automated rolling stock management via the OCC, with safety assurance via the Automated Train Control (ATC) and supporting communication systems

Mission Critical Information Systems

CBTC Architecture

Sub-Systems

What Customers Want

Intelligent, Safe, Reliable Systems

• The Basics

- A safe system, compliant to operational requirements
- Delivered on time & budget

Operations & Long Term Objectives

- Flexibility
 - To respond to customer loads, traffic incident management, 24 hour operations)
- Save operating costs
 - Energy, maintenance, staff
- Provide added value services to passengers
- Manage capacity (near and long term)
- Optimize capital investment costs (civil, train sets)
- Increased security
- Decision aid and crisis management tools

The Implementation Challenge

Murphy's Law always applies – be prepared to deal with the unexpected

Opening for Special Events

- Has to happen by a specific date no matter what
 - Political mandate
 - Public event or festival

Short Schedule

Can you go live in 14 months?

Dealing with realities of projects

- Interfaces with and dependencies on civil & other works
- Changing requirements
- Train control is close to last on the implementation chain
 - But necessary to enter revenue operations

TOTAL Capacity (AW1 138) (AW2 507) (AW3 760) (AW4 1022)

THALES PARSONS **Dubai Metro Experience**

Gold Car

DM1 car

27

Gold Car Seating: 19 + 1WC

15 + 1WC

W&C Seating:

Train Interior

Train Interiors – Silver Class

Dubai Metro – Project Challenges

- 1. Demanding Schedule for a project of such magnitude
- 2. Fast track construction
- 3. Contractor; new joint venture, none of which had experience in the market.
- 4. Introduction of a new technology for the first transit rail project in the Middle East area
- 5. High expectations from RTA who wanted a Signature Project for the Dubai Area
- 6. Major utilities diversions (impacting 80% of Dubai's utilities)
- **7. Major variations**; management and execution of major variations throughout the construction period.
- 8. **Procurement**; project initiation and first three years were during global and local/regional construction boom, followed by massive downturn.

Project Achievement

- Single largest fully automatic UTO system in the world (75kms)
- Opening on accelerated schedule "9-9-9" in full UTO with safety case for a railway where not all stations were initially opened
- Satisfied Customer

Thank you!