

Christian Junge-Filipek
Asset Management Consultant

Ove Arup & Partners
United Kingdom

christian.junge-filipek@arup.com https://www.linkedin.com/in/christianjungefilipek/

What is Resilience?

- "... Ability of an organisation to absorb and adapt in an changing environment."
- "... Organizational resilience contributes to:
- An improved ability to anticipate and address **risks** and **vulnerabilities**;
- Increased **coordination and integration of management disciplines** to improve coherence and performance;
- A greater understanding of interested parties and dependencies that support strategic goals, and objectives."

ISO 22316:2017

"How well we bounce"

Professor Julia Black, LSE

The ability of a system, community or society to anticipate, absorb, recover from and adapt to **shocks** and **stresses** in a timely manner.

© Rockefeller Foundation, 2017

What is Resilience?

- Our societies depend on nearseamless interaction of assets, services and people.
- Interdependencies and influences are exceedingly complex and fragile.
- Understanding Resilience needs a holistic, inclusive view not only systems- or asset-view
- Resilience considerations should not be limited by the primary function of the asset or system

Why is Resilience important for transportation

systems?

- ➤ Where would we be without transportation?
 - Keeping societies connected and running
 - Securing economic prosperity and growth
- ➤ What are the events that can cause disruption of our transportation systems?

Shocks: extreme weather, power failures, malicious attacks, terrorism, transportation accidents

Stresses: legislation change, economic pressures, new technologies, customer behaviour

Transportation Officials, 2017

Typical Resilience Timeline

Resilience maturity	Before	During	After
Awareness	2		
Preparedness	2		
Forewarning	3		
Robustness		3	
Coping		4	
Response		3	
Recovery			2
Resource availability			1
Surveillance			1
Learning from event			3

Asset Management Anatomy and Resilience

Holistic organisational resilience framework:

Robust

Establishing well managed systems

Redundant

Providing spare capacity to avoid dependence on a single asset

Inclusive

Broadening consultation and communication

Resourceful

Using systems and resources in alternate ways

Integrated

Aligning a range of systems

Long-Term

Ensuring actions are future proofed

Reflective

Learning from past experience for future decisions

Adaptive

Adopting an alternate strategy to adapt to circumstances

Innovative

Developing cutting edge processes

Source: Asset Management - an anatomy, The Institute of Asset Management (IAM), 2015 https://theiam.org/knowledge/Knowledge-Base/the-anatomy/

AM Anatomy – Resilience Shocks / Stresses Mapping

Legislative Change

Increase in Economic Regulation Introduction of (HGV) Tolls Congestion Charges

Economic Change

Change in Market Confidence Increase in Employment Costs Brexit

Customer/Environmental Change

Population Growth Demographic Change Electric Vehicles

Organisation & People

Skills Shortage Industrial Action Epidemic

Source: Asset Management - an anatomy, The Institute of Asset Management (IAM), 2015 https://theiam.org/knowledge/Knowledge-Base/the-anatomy/

External Risks

Transportation Accidents
Malicious Attacks/Terrorism
Cyber Attack
Extreme Weather
Flooding

Asset Information

Failure of Monitoring Systems Data Quality

Supply Chain

Power Outage Telecommunications Failure Energy and Resource Costs Skills Shortages Third Party Service Failure

Transportation System – Internal Components

- Infrastructure: Roads, tracks, stations, airports
- Vehicles: Cars, bicycles, HGVs, ships
- Equipment: Maintenance plants, loading cranes
- **Power Systems:** Power plants, engines, living organisms (humans, animals)
- **Fuel:** Petrol, diesel, electricity, renewable fuels
- Control, Communications & Location
 Systems: Traffic monitoring, traffic control,
 GPS, data logging
- These internal components make the physical infrastructure of our transportation systems

Source: Resilience in Transportation Systems, Tamvakis, Xenidis, 2012

Transportation Systems – External Components

- External components common to every transportation system
- Building the framework of our systems
- Setting parameters of how we use transportation
- Defining how Transportation Resilience affects us in our lives

Source: Resilience in transportation systems, Tamvakis, Xenidis, 2012

Shock: Extreme Weather

- Storm Ophelia October 2017: €60m damages
- UK heatwave June 2017
- "The Big Freeze" 1962/63

Stress: Electric Vehicles

• UK registration pure electric vehicles in 2017 up 33% from 2016; Petrol-Hybrids up 43%

Shock: Brexit

- EU Membership Referendum 23 June 2016
- UK General Election 8 June 2017

Shock: Extreme Weather

- Storm Ophelia October 2017: €60m damages
- UK heatwave June 2017
- "The Big Freeze" 1962/63

Internal Systems Impact:

- <u>Infrastructure</u> damage to roads, tracks, ports and airports; disruption to services
- Damage to and loss of <u>vehicles</u>; no service until repair or replacement
- <u>Power Systems</u> might be interrupted; limited capacity for emergency response, repair and recovery
- Disruptions to <u>fuel</u> supply; limiting evacuation and emergency response efforts; potential for price increases
- Control & Communication Systems might be interrupted, damaged beyond repair; hindering effective emergency response, costly replacement

External Systems Impact:

- Governments may be pressured for inadequate response mechanisms
- Lack of usability will deter <u>customers</u> leading to lost revenue
- Within <u>general public</u>, potential loss of live and access to places of work, lost production and cascading effects in globalised economy
- Supply Industry will become pressured to produce replacement parts and repair materials
- High insurance claims and losses will be felt in the <u>financial</u> <u>community</u>
- <u>Competitors</u>, if available will profit from disruption

Stress: Electric Vehicles

• UK registration pure electric vehicles in 2017 up 33% from 2016; Petrol-Hybrids up 43%

Internal Systems Impact:

- <u>Infrastructure</u> requirement for increasing number of charging points
- Change in production of electric <u>vehicles</u>; high demand in specific products, i.e. batteries
- <u>Power Systems</u> experiencing higher demand of electricity;
 might not have additional capacity
- Traditional <u>fuels</u> will feel decreasing demand and price fluctuations
- Digitalisation and mobile technologies in electric vehicles will impact <u>Control & Communication Systems</u>

External Systems Impact:

- Governments need to provide necessary legislation; incentives to adapt to new technologies
- Incentives may attract <u>customers</u> with low purchasing and running cost
- General public may benefit from lower emissions; disposal and sustainability of used batteries will remain a challenge
- Supply Industry will need to meet demand in materials and vehicles overall
- New markets and products might impact <u>financial community</u>
- Competitors, may profit from shorter travel distances and potential mixed-modal travel

Shock: Brexit

- EU Membership Referendum
 23 June 2016
- UK General Election 8 June 2017

Internal Systems Impact:

- Installation of border and customs controls will impact infrastructure; longer wait times affecting freight and travel
- Future trade agreements and tariffs may change usage of freight vehicles; less HGV, more ship traffic
- <u>Fuel</u> pricing might fluctuate due to tariffs and demand changes
- EU-wide developments in <u>Control & Communication</u>
 <u>Systems</u> may be impacted by legislation

External Systems Impact:

- Governments need to consider trade an travel implications of new legislation and multi-national agreements
- Challenges to trade and travel outside of the UK might deter customers from transportation usage
- Supply Industry will need to reconsider production and supply chain arrangements in the face of tariffs
- Fluctuation in the markets has impacted <u>financial community</u> hesitation to invest and finance UK infrastructure projects
- <u>Competitors</u>, domestic travel and trade might increase, while international travel might decrease; car and train travel over air travel

Transportation Resilience – Conclusions and Recommendations

- Take **holistic** view over asset- or systems focus
- What are the acceptable levels of service?
- What is the **disruption** to be avoided?
- Explore interdependencies of the internal systems and functions of the components
- Understand the shocks and stresses threatening the system as a whole, including cascading effects and multiple events scenarios
- Utilise new ways and possibilities in data collection and analytics
- Communicate with all internal and external stakeholders to achieve inclusive and acceptable solutions
- Extend planning horizons including future scenarios

- Understand interdependencies on a national and global level to prevent unexpected disruption
- Build contingency and emergency response plans, build capability to recover from impacts of national scale

Thank you for your attention

Christian Junge-Filipek
Asset Management Consultant
Ove Arup & Partners Ltd.
Leeds, United Kingdom

christian.junge-filipek@arup.com https://www.linkedin.com/in/christianjungefilipek/ Phone: +44 113 3016 016

<u>Cell</u>: +44 7392 083618

Resources:

The Rockefeller Foundation, Judith Robin: The Most Important Job You Haven't Heard Of (Yet), https://www.rockefellerfoundation.org/blog/most-important-job-you-haven-t-heard/ , 2014	Pages 2, 14
Jim W. Hall, Martino Tran, Adrian J. Hickford, Robert J. Nicholls: The Future of National Infrastructure: A system-of-systems approach, Cambridge University Press, 2016	Page 3
American Association of State Highway and Transportation Officials: Understanding Transportation Resilience: A 2016-2018 Roadmap, 2017	Page 4
The Institute of Asset Management (IAM): Asset Management - an anatomy (Version 3), https://theiam.org/knowledge/Knowledge-Base/the-anatomy/ , 2015	Pages 6,7
Pavlos Tamvakis, Yiannis Xenidis: Resilience in Transportation Systems, Aristotle University of Thessaloniki, Department of Civil Engineering, 2012	Pages 8, 9