

3D printed bridge

AQTr – 19 September 2019

Stijn Joosten

- // Background
- // Challenges
- // Design
- // Element testing
- // Structural Analysis
- // Full-scale testing
- // Going forward

Background

From 3D-printing to digital fabrication

• 1926 patent: "the use of an electric arc as a heat source to generate 3D objects depositing molten metal in superimposed layers"

Background

From 3D-printing to digital fabrication

• Today:

Welding robot + Computer + Engineer = Digital Fabrication

Background Joris Laarman Lab – MX3D

ARUP

ARUP

Challenges

3D printing challenges

Challenges

Challenges Geometry

Challenges Welding defects

Inclusions

Lack of fusion

Challenges Design

Design First version MX3D

Design

Designing for 3D printing

Design Approach

- Make a **robust design**, dealing with the specific **challenges** that come with 3D printing
- Perform **material tests** to find out structural properties
- Based on these tests, perform structural analyses
 - ICL (non-linear 2D shell model, one load case, no checks)
 - Arup model (used for design, simplified 1D beam model, all load combinations structural checks)
- Perform **full-scale tests** on the finished bridge, in order to **verify** the analysis
 - 'SLS' test before Dutch Design week
 - ULS test for final permit and placement in Amsterdam

Design Structural concept

Design Form finding

Design Form finding

Design Form finding

Design Preliminary design

Testing

Design by experiments

Testing Geometry

Testing Material

Testing Material

Testing Material

Structural analysis

Showing that we have tackled all the challenges

Structural analysis

Starting points

- CC1
- Design life 5 years (temporary, 3 years)
- Design values: NEN EN1990 Annex D
 - (1) The design value X_d for X should be found by using:

$$X_{\mathbf{d}} = \eta_{\mathbf{d}} m_{\mathbf{X}} \{1 - k_{\mathbf{d}, n} V_{\mathbf{X}}\} \tag{D.4}$$

In this case, η_d should cover all uncertainties not covered by the tests.

(2) $k_{\rm d,n}$ should be obtained from table D2.

Table D2 - Values of $k_{\rm d,n}$ for the ULS design value.

n	1	2	3	4	5	6	8	10	20	30	∞
V _X known	4,36	3,77	3,56	3,44	3,37	3,33	3,27	3,23	3,16	3,13	3,04
V_{X}	-	-	-	11,40	7,85	6,36	5,07	4,51	3,64	3,44	3,04
unknown											

- t based on measurements
- E(100-190GPa) calibrated by testing

Force distribution		Structural checks			

Nominal	Average	Characteristic	Design
t= 3,5mm	3,57mm	3,14mm	2,81mm
t= 7mm	6,96mm	6,08mm	5,41mm
f _y = 240MPa	267MPa	235MPa	202 MPa
$f_u = 585MPa$	571MPa	518MPa	462 MPa

Structural analysis Approach

• Check stresses;

- Focus on sudden failures;
 - (Global) instability;
 - Crack growth brittle failure;

- Mitigate risk:
 - Robust design;
 - Inspections;
 - Live monitoring.

Structural analysis Stresses

Structural analysis Reduced cross sections

Structural analysis Buckling and dynamic behaviour

- Buckling load factor >> 10
- Eigenfrequency > 5,0 Hz

Structural analysis

Fracture mechanics

- Objective: Assess acceptability of weld flaws
- Outcome (conservative assumptions): All flaws in critical areas > 2mm in depth to be repaired
 - But how to inspect?

Structural analysis Influence analysis

- Selection of critical elements;
 - Pedestrian loading;
 - Police horse loading (point load, 7 kN);
 - Load optimization

Structural analysis

Robustness

Full-scale testing

Were we right?

Full-scale testing Structural model comparison

• GSA (Arup) and Abaqus (Imperial College London) predictions

Full-scale testing 'SLS'

Vertical: 115kN (ca. 4-5 kN/m2) Horizontal: 3 x 7,5 kN

Full-scale testing 'SLS'

Full-scale testing 'SLS'

Going forward

And now?

Going forward A smarter bridge project

Going forward
Full-scale ULS load testing

Going forward 1, 2, 3, print?

Project Mx3D printed bridge

Location the Netherlands

Client Municipality of Amsterdam

Key facts

// 12,5m long, 1,95 to 3 m wide

// 10,3m span, 23,3m2

// 3D printed steel: 4500kg -1100km welding wire

// Dutch Design Week: Q4-2018

// EC proof load: This week!

